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Abstract-Explicit matrix formulae are derived for the cafculation of total exchange areas in the context 
of Hottel’s zone method. Working relations are obtained for the case of a uniform grey absorbing- 
emitting/isotropically-scattering medium confined in a Lambert enclosure. The approach readily leads 
to limiting cases and significantly reduces computational labor. For an enclosure zoned into n volume 
and r non-black surface zones the general procedure requires evaluation of one (n x n) and one (r x r) 
inverse matrix. Sufficient conditions for the existence of the latter are shown to be wholly non-restrictive. 
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NOMENCLATURE 

area of ith surface zone [m’]; 
= onZT4, hemispherical, black-body, 
emissive power of the ith surface zone 

[W/m’]; 
= ar?T&, black-body emissive power of ith 

volume zone [W/m’]; 
incident flux density on the ith surface zone 

[W/m’]; 
incident flux density on ith volume zone 

Wg,i, leaving flux density at ith volume zone 

[w/m’]. 
Greek symbols 

Ei, hemispherical emissivity of ith surface zone; 

Pi> = 1 - ai, diffuse reflectivity of ith surface 
zone; 

6, Stefan-Boltzmann constant; 

00, = KJK,, Albedo for scatter. 

Matrix notation 

A, 
AT, 
A-‘, 
I, 

= [Aij]; 
transpose of A; 
inverse of A ; 
= [Sij], the identity matrix, where 6ij is the 
Kronecker delta; 

AI, 
ABI, 

= [AiSri], diagonal matrix with elements Ai; 

= AI-B1 = [AiBiGij], product of diagonal 
matrices; 

(A/BP, = AI.BI-’ = [A&5,,]; 

I 
= s/r/;, net radiative absorption per unit i: L, 

the p-vector with unity elements; 

volume for ith volume zone [W/m3]; 
auxiliary matrices defined by equations (11) 

direct surface-surface exchange area [m*]; 
[m’]; 

direct volume-to-surface exchange area [m*]; 
P, (n x n) inverse matrix arising from (particle) 

= sjgi, direct surface-to-volume exchange 
scatter [m-‘I; 

area [m”]; 
R, (m x m) inverse multiple refleciion matrix 

direct volume-volume exchange area [m”] ; 
[m-‘1. 

total surface-surface exchange area Cm’]; 
total volume-to-surface exchange area [m’] ; 

Subscripts 
b 

[W/m’]; 
absorption coefficient [m-i]; 
scatter coefficient [m-i]; 
= 1c;, + &, total extinction coefficient [m-l]; 
= Q,/A,, net radiative flux density leaving 
ith surface zone [W/m’]; 
net radiative flux leaving ith surface zone 

[WI; 
net radiative absorption at ith volume zone 

[WI; 

= SjGi, total surface-to-volume exchange 
number of black surface zones; 

area [m’]; 
k, = b f r, total number of surface zones; 

total volume-volume exchange area [m’]; 
6 number of volume zones; 

volume of ith volume zone [m”]; 
r, number of non-black surface zones. 

leaving flux density at ith surface zone superscripts 

[W/m’]; *, denotes dimensionless exchange area. 
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INTRODUCTION 

THE ZONE method of analysis, due to Hottel and 

co-workers [2-41, is an extraordinarily versatile 
numerical tool for virtually any heat-transfer problem 
in which thermal radiation is a significant mode of 

energy transfer. Applications can range from simple 
well-mixed (one-zone) furnace models to more sophis- 

ticated multi-zone furnace models in which allowance 
is made for spatial dependence of gas temperature 
[2,4]. Hottel and Sarofim have also shown that the 
method can be readily extended to the case where an 

absorbingemitting medium, in addition, scatters radi- 
ation isotropically [3,4]. 

Recently the essential features of the approach have 
been summarized in Radiative Transfer (R.T.) [4]. 
Central to the method is the definition of direct and 

total exchange areas for a grey gas. These grey-gas 
exchange areas are temperature-independent and rep- 
resent basic ingredients in the formulation of real-gas 
spectral models [4]. Physically, in the case of an 

enclosure, the direct exchange areas represent direct 
radiant exchange between black surface zones and/or 
non-scattering volume zones. Alternatively, the total 

exchange areas also account for additional exchange 
between zone pairs arising from multiple reflections 
from the walls and/or isotropic scatter from intervening 

volume elements. The total exchange areas are explicit 
functions of the direct exchange areas, albedo of the 

medium, and the emissivity profile of the enclosure. 

The procedure outlined in R.T. for the calculation 
of total exchange areas is non-explicit. It suggests 

that solution of simultaneous linear equations be 
performed for intermediate quantities termed “(partial) 
-leaving flux densities-each zone in turn, being con- 
sidered thesole net emitter”. Allowance for the presence 

of black surface zones is discussed in the context of 
surface-surface exchange with a transparent medium. 
The general working relations, however, for an 

absorbing-emitting and scattering medium are re- 
stricted to a grey enclosure. Moreover, because a 

(non-conventional) scalar notation is used to describe 
what are essentially matrix operations it can prove 
quite difficult to incorporate the suggested procedure 
into an efficient machine code. 

The major purpose of the present work is to docu- 
ment certain explicit matrix elements for the calculation 
of total exchange areas. A general solution is thus ob- 
tained for an absorbing-emitting-isotropically scatter- 
ing medium confined in a Lambert enclosure. As might 
be expected, in the first instance, a considerable com- 
paction and consolidation of the scalar notation in 
R.T. is effected. Subsequent exploitation of matrix 
properties, however, leads to significant coding and 
computational simplifications. These should prove to 

be of value in practical furnace design calculations. 
From another viewpoint, the present work stands as 
an independent mathematical proof of the development 

in R.T. The matrix approach thus exhibits commen- 
surate pedagogical value. 

Mathematically, the zone method is perhaps the 
simplest numerical quadrature ofthe governing integral 
equations for radiative transfer. In conjunction with 

conventional finite-difference techniques to represent 
conductive and,/or convective transport it provides a 
most convenient way to discretize the contribution of 
radiation in the general integro-differential energy 
equation [5]. Here, the zone size will usually be 

dictated by the conductive or convective length scale. 
Such problems may then typically give rise to extremely 
large arrays of exchange areas. The present work was 
originally motivated to address such practical diffi- 

culties as arise relative to associated efficient machine 
computation and represents but a portion of a broader 
investigation of the numerical analysis of the zone 
method. It is to be emphasized that the present issue 
is subordinate to that arising from subsequent for- 
mulation of energy balances (grey or non-grey) based 

on total exchange areas. The latter leads to questions 
of efficient solution of large sets of non-linear algebraic 
equations and computer store which merit separate 

discussion. 

MATRIX PROBLEM STATEMENT 

Consider an enclosure of arbitrary geometrical com- 
plexity having diffusely reflecting walls. The enclosure 
confines an optically uniform grey absorbing-emitting 
medium which, in addition, scatters radiation iso- 

tropically. Let the enclosure be subdivided into m 
surface zones and n volume zones each small enough 
to be considered isothermal. Then in matrix notation 

the incident and leaving hemispherical flux densities 
at each of the m surface zones are given by 

AI.H=G.W+@.W, (la) 

W = ~1.Efpi.H (lb) 

while the net radiative flux leaving each surface zone 
is defined as 

Q = AI.(W-H) (2a) 

or using equation (1 b) to eliminate W 

Q = &AI.(E-H). (2b) 

In analogy with equations (1) and (2), the incident 
and leaving flux densities at each of the n volume zones 

are given as 

4K,VI.H, = gS.W+@*W, (3a) 

W, = (1 -~o,)E,+~,H, (3b) 
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where 

S = (1 -wo)4K,VI.(H,-E,) (4) 

defines an n-vector whose elements represent the net 

radiant absorption by each volume zone, e.g. the 

radiation source term with respect to other modes of 
energy transfer. 

In equations (l)-(4), E, H, W and Q are m-vectors, 
while E,, H, and W, are n-vectors. The matrix notation 
employed is essentially an obvious generalization of 

the scalar notation defined in R.T. For example, 

Ss = [G] and gg = [si~j] define the (symmetric) 
(m x m) and (n x n) arrays of direct surface-surface and 

volume-volume exchange areas, respectively. Further, 

strict adherence is made here to conventional matrix 
notation whereby the first and second subscripts of a 

scalar element define the row and column indices. It is 

also convenient to think of the exchange areas as being 
directed with the first subscript denoting the receiving 

zone and the second the sending zone. These con- 
siderations lead to the additional definition of the 
(m x n) array of direct volume-to-surface exchange 

areas, Sp, in equation (1 a) which is merely the transpose 
-_ 

of @ in equation (3a), i.e. gisj = sjgi. On this basis the 

integral nature of equations (la) and (3a) become clear 
as they represent the flux density incident on a zone 
as a result of radiation leaving all other zones. 

In equations (l)-(4), the notation Dl = [OiSij] is 

is used for all diagonal matrices. Also in what follows 
the simple relations for the inverse of and products 
involving diagonal matrices will be used freely without 
further comment. Lastly, all the direct exchange areas 
involved in equations (l)-(4) are evaluated at K, the 
total extinction coefficient. 

The (arrays of) total exchange areas are defined by 
the following 

Q = sAl.E-SS.E-SG.E, (5) 

S = GG.E,+GS.E-(l-w,,)4&Vl.E,. (6) 

Consideration of thermodynamic equilibrium requires 

that the total exchange areas defined in equations (5) 
and (6) satisfy the conservation (row sum) relations 

cAl.1, = SS.l,+SG.I, 0) 
- - 

(1 -w,)4K,Vl~l, = GG.I,+GS.I,. (3 

If equations (5) and (6) are applied to a black enclosure, 

confining a non-scattering medium, it is apparent that 
the direct exchange areas must satisfy 

Al.1, = sS.l,+Sg.l, (8a) 

4&Vl*l, = gg.l,+gs.l,. (8b) 

Equations (8) also follow immediately from the 
(integral) definition of the direct exchange areas [4,5]. 
Lastly, both equations (7) and (8) are useful for checking 
of calculations and/or generation of some exchange 
areas by arithmetic difference. 

Equations (l)-(8) are, in fact, valid for monochro- 

matic, as well as, grey transfer. They are however 

restricted by the assumptions of diffuse reflection and 

isotropic scatter. Both the direct and total exchange 
areas are independent of temperature. The total ex- 
change areas are moreover explicitly dependent on 
albedo, wall emissivities, and the direct exchange areas. 

GENERAL ELIMINATION PROCEDURE 

The required explicit working relations for the total 

exchange areas are obtained by recognizing that 

equations (1) and (3) essentially constitute four matrix 
equations in the four unknowns W, H, W, and H,. 

Solution for these quantities in terms of E and E,, 

followed by substitution of H and H, into equations 

(2b) and (4) and comparison of the result with equations 
(5) and (6) leads to the desired result. This elimination 

procedure can be performed by several routes. It 
appears that the path now described leads to the most 
computationally efficient final result. 

First substitute W and W, from equations (1 b) and 

(3b) into equations (la) and (3a). The result is two 
equations in the unknowns H and H,. Simultaneous 
solution of these two (intermediate) equations then 
yields 

H = R*(~+wOL)*~l~E+(l-wo)R~K*E, (9a) 

and 

H, = P.$.R’: sA1.E 

+(l-w,)P.(gg+gs.pI.R.K).E, (9b) 

where P and R are inverse matrices defined as 

P = [4K,VI-woggJ-’ (n x n) (loa) 

R = [AI-(E+wOL).pI]-’ (m x m) (lob) 

and L and K are auxiliaries defined by 

L=sg.P.gs (m x m) (1 la) 

K = 4&jsg.P.Vl (m x n). (1 lb) 

Matrices P and L are both symmetric. To obtain 
equations (9) the following identities must be recognized 

R’.AI = I+pl*R.(E+w,L) (12a) 

4&P*Vl= ISooP*gg (12b) 

as well as the symmetry of the product PI- R. 
Substitution of equations (9) into equations (2b) 

and (4) followed by comparison with equations (5) 

and (6) then leads to the identities: 

General solution 

SS = &AI-R (ss+w,L)*~l (m x m) (13a) 

SG = (1 -w&Al. R. K = GS’r (m x n) (13b,c) 

GG = (1 -w,)‘4K,VI.P.gg 

+(l-~~)~K’r*yl.R.K (n x n). (13d) 
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Equations (13) are the desired final result. They are 
valid for all 0 < co0 < 1 and 0 < ci < 1. Note further 
that equations (13) imply the symmetry of the groupings 
AI*R*(SS+w,L) and VI.P*gg which can be used to 
computational advantage. All such symmetry relations 
can, in fact. be easily proved provided that the inverse 
matrices P and R exist. Sufficient conditions for the 

latter are considered in the Appendix. These are shown 
to be wholly non-restrictive for any physically meaning- 

ful enclosure problem 

LIMITING FORMS 

If w0 = 0, P = (1/4K)VI-’ and K = sg; while if 
ci = 1, R = AI-‘. Thus, if w0 = 0 and all ci = 1, equa- 

tions (13) reduce identically to expressions for the direct 
exchange areas. More important limiting forms result- 
ing from equations (13) are documented as follows: 

No stutter (wO = 0) 

ss = EAI.R-&.&I (144 

SG = EAI.R.sg =i%’ (14b, c) 

GG = gg+gs.pI.R.s& (14d) 

Perfect isotropic scatter ((9” = I) 

%G = &AI.R.(G+L)*&I (15a) 

SG=O=GS’ (15b,c) 

GG=O. (15d) 

Black enclosure (all Ei = 1) 

ss = ss+w,L (16a) 
- 
SG = (1 -w,)K = GS’ (16b,c) 

GG = (1 -w,#4K,VI*P.gg. (16d) 

Both the fundamental physical and mathematical sig- 
nificance of the auxiliary matrices K and L are made 

clear from equations (16). 

Optically thin/transparent approximation 
Here use is made of the fact that in the limit as K, + 0 

Ss + finite, sg + 0 

;ps + finite, 
1 -_ 

h;gg+o 

which results in P + (1/4K,)VI-‘, L + 0, and K + 0. 
Equations (13) then become as lim K, + 0 

SS-+EAI~R.ss+.I (17a) 

SG+0 (17b) 

(17c) 

(174 

The total exchange areas as computed from equations 
(17) are then used in conjunction with the following 
simplified forms of equations (5) and (6), viz. 

Q = EAI*E-s*E (18) 

;S = @*E-(1 -to,,)4VI*E,. (19) 
t 

In this instance transfer between the walls and transfer 

from walls to volume zones assumes the intervening 
medium to be transparent. 

MATRIX PARTITIONING 

It is clear from equations (10) and (13) that the general 
formulation requires only two inverse matrices to be 

calculated. Matrix P is symmetric and positive for 
K, > 0 and co0 # 0 (see Appendix). When some of the 

surface zones are black, however, matrix R-’ can be 

reduced so as to obtain simplifications in numerical 
labor. 

Let the surface zones be numbered such that the 

first b are black and the remaining r are non-black 
(m = r+ b). In what follows the partition notation as in 

(b x b) (b x r) 

shall be adopted for all (m x m) arrays as required. 
Further, partition @ and gs as 

(6 x 4 

- F-1 - 

(n x b) (n x r) 
%l 

% = -=-- !P 
%2 

= [ PSI ~ if32 ] Wb,c) 

(m x n) 
(r x n) 

(n x 4 

such that the auxiliary matrix L partitions as 

L = 
sg,.P.gs,1 sg,.P.gsz 

[- -- - 

-~----~1-~-----_- 

sg2.P.gsllsg,.P.gs2 I 
(20d) 

With the surface zone numbering convention thus 
adopted, it follows that matrix R-’ and thus inverse R 
are both upper (block) triangular. The partitions of R 
are then computed readily from 

R 1,1 = AI,:; 

R - AI~,:.[~~~,~+woL~,~I.T 
(21a, b) 

1.1 - 

Rz,, = 0 (r x b); Rz,2 = pIi,\ .T (21c,d) 

where 

T = WdI2,2 - (ss2.2+%L2.2)1-’ (22) 

is a symmetric (r x r) inverse matrix. Matrix T is a 
generalization of the “transfer” matrix defined in R.T. 

Matrix partitioning and symmetry relations may be 
used at length to simplify the matrix multiplications 
incurred by equations (13). The Appendix discusses 
further simplifications in the calculation of matrix T 
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effected by appropriate numbering of the grey surface 

zones. When an enclosure exhibits geometric sym- 

metry, partitioning based on appropriate zone number- 

ing will also expedite evaluation of the inverse matrices. 
Such conventions will usually take precedence over 
that for black surface zones. 
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such that 

R*’ = AI-‘. R*“. AI, (28) 

Likewise, the conservation relations for the dimen- 

sionless total exchange areas are found from equations 
(7) to be 

THE LIMIT OF SMALL ZONE SIZE 

As the zone size decreases, all the direct and total 
exchange areas vanish. Further, in systems involving 
one or two-dimensional geometries, the zones will have 
at least one infinite dimension. Strictly speaking then 
the arrays VI and AI have no meaning here. Both of 

these situations can be addressed through the definition 
ofdimensionless exchange areas based on a unit volume 
or area of the receiving zone. 

Let dimensionless direct exchange areas be defined 
as follows : 

&* = AI-‘. &. Sg* = AI-‘.% 1 

i.e. 

sS* = [SiSj/Ai], 

etc. Similar notation is used for arrays of dimensionless 

total exchange areas such that pre-multiplication of 
equations (5) and (6) by AI-’ and (l/I&)VI-‘. respec- 
tively, yields 

q = EI.E-!%*.E-SG*.E 9 (24) 

$S’ = GG*.E,+GS**E-4(1 -oO) E,. (25) 

Here q = [Qi/‘Ai] is the m-vector of flux densities and 
S’ = [Si/l$] is the (dimensional) radiant source per unit 
volume. 

Pre-multiplication of equations (13a, b) by AI-’ and 
(13c,d) by (l/K,)VI-‘, respectively, similarly yields 

sS* = .g.R*.(SEI+(Y;,L*).d (26a) 

SG* = (1-w&I.R* sg*.P* (26b) 
- 
GS* = (1 -w,JP*.gs*.R*‘.EI (26~) 

GG* = (1 -w,,)‘P*. Pg* 

+(~-w,,)~P*.@*.~I.R*.S~*.P* (26d) 

where 

P* =[I-$gg*]-l (27a) 

L* c g*. p*. @* (‘W 

R* EE [I+‘+~L*) -,,I]-’ (2%) 

R*’ E [I-p+*+ y L*)] -’ (274 

eI.1, = SS*.I,+SG*.l, (29a) 

4( 1 - w,)l, = GG* - 1, + GS*. I,,,. W-N 

With this formulation, when the zone areas and 

volumes are unequal, none of the symmetry relations 
derived for the dimensional exchange areas are valid. 
In addition, it follows that 

1 
GS* = __VI-‘.SG*“. AI 

rc 
(30) 

so that GS* # SC*“ even if the zone areas and 

volumes are equal. Still, only two inverse matrices need 
be calculated despite the appearance of R*’ in equation 
(26~). Here matrix R*’ can be partitioned into (lower) 

block triangular form when black zones are present 
and the identity 

leads to 

pI.R* = R*‘.pI (31a) 

W2 = pk.2 - W.2 *PI,:. @lb) 

It should be clear that the major additional labor posed 
by this approach is that attendant to non-symmetric 
multiplication and matrix inversion. For the special 
case of F = const., Ai = const. all the (dimensional) 

symmetry relations hold with the particular conse- 
quences that R*’ = R*’ 

- 
and SG* is a constant 

multiplicative of GS* “: 

In the limit of arbitrarily small zone size, the dimen- 

sionless exchange areas represent “point-point” ex- 
change and do not vanish. Moreover, equations (24)- 

(28) are the form to be used when the radiation 
balances are struck at infinitesimal elements at the 
centers of each zone, i.e. “finite-infinitesimal zone 

exchange”. This is the approach promulgated by 
Einstein [1] and elaborated upon by Noble [5]. In this 
regard, the dimensionless exchange areas are to be 
interpreted as derivatives, viz. 

g* = [tm], gs* =[;* yq; etc, 

EXAMPLE PROBLEMS 

The simplicity and utility of the matrix approach 
are evidenced through three examples. 

Example I 
Two infinite parallel plates, with emissivities Ed and 

c2, confine a transparent medium of width L. Evaluate 
all the surface-surface total exchange areas. 
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Solution. Application of equation (26a) with (uO = 0 For w0 = 1, equations (27) then produce 
yields 

Example II 

An enclosure of arbitrary geometry confines a non- 
scattering medium having absorption coefficient 
K, = K. The surface of the enclosure is divided into b 

black and r non-black surface zones (m = r + b). None 
of the non-black zones have a direct view of each other 

(they may, for example, comprise one planar wall). The 
enclosure is to be divided into II volume zones. Find 

closed-form expressions for the total volume-volume 
exchange areas. 

Solution. The dimensionless form of equation (14d) 
always partitions as 

GG* = gg*+gs;.&2. RI,,*s$ (32) 

and since && = 0, it follows from equation (21 d) and 
(22) that Rf,, = 12.*. The scalar form of equation (32) 

is then simply 

Example III 

Repeat Example I for the case of a purely isotropic 

scattering medium. The optical thickness between the 
plates is r0 = KFZL = 1, the emissivities are ai = 0.6 
and Ed = 0.4, and n = 3 equi-width volume zones are 

to be used. 
Solution. In this case the required direct exchange 

areas can be computed from forms involving the third- 

order exponential integral as documented in Hottel and 
Sarofim [4]. Numerically, for r0 = 1, these are found 

to be 

ss* $ll, ,.,,,I sg* = [::t+;; i:;;; ::::;I 

rl.291 ““““1 i’“” 0.626 0.2781 

gS* = 0.665 0.665 @j* = 0.636 1.419 0.626 

which, when substituted into equation (34) yields 

The only approximation here is that of )I = 3 volume 
zones. It may be shown that 

which produces S,S,* = 0.252. (Note: all calculations 
have been rounded down from six significant figures 
for expedient presentation.) The error is less than 
0.5 per cent and is a function of r,!‘rz. For large n, 

calculation of P* might be expedited because of geo- 
metric symmetry. Thus, if the volume zones are num- 

bered with the sequence 1,2, , n/2, n, n - 1, , n/2 + 1 
(n even), P*-i will partition into four square (sym- 
metric) sub-matrices of dimension n/2. Only two of 
these are unique with those diagonally opposed being 
identical. It follows that the equivalent partitions of P* 

exhibit the very same properties and may be obtained 

by inverting two matrices each of dimension n/2. 

DISCUSSION 

The relationship between the matrix approach and 
the scalar procedure outlined in R.T. is now examined. 
When written in the present matrix notation, the latter 

is seen to consist of two parts, viz. 

(in x m) (m x n) (m x m) (m x n) 

l- 
LO.386 1.2911 LO.278 0.626 1.4191. (n x 4 (II x 11) (n x m) (n x n) 

When pI-’ exists, equation (27~) yields the identity (m x m) (m x m) 

R*.~~*+~L*)=(R*_I).pI~,, (33) -[~~~~~‘~~~~~~~~~~i]‘[~~~~~~~~~~””’ 

which, when used to simplify equation (26a) results in 

SS* = (&/p)I.(T*-pI).(E/p)I (34) followed by the substitutions 

where s = (sA/p)I[W~*EI-‘-EI] (37a) 
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orifu,#O 

GS = 4KJl -w,,)/wJI.W~/EI-’ (37d) 

GG= 

4K,(l-w,)/w,VI* [W,~~~E,II-(l-wo)I]. (37e) 

In equations (36) and (37) EI and E,I are arbitrary 
diagonal arrays of emissive powers which cancel on 

substitution. Further, the second member in the 1.h.s. 
of equation (36) is an (m+ n)’ array of (partitioned) 
“partial leaving flux densities-each zone in turn being 

the sole net emitter” [4]. The circled superscript 

notation in equation (36) refers to the emitting 
zones. Thus the typical element of (m x n) array 

Wp, l@@, for example, is the leaving flux density at 

surface zone i caused by sole net emission of volume 
zone j. 

Equation (36) exemplifies the basicmathematical link 

between the matrix approach and that suggested in 
R.T., viz. if a set of linear equations is repeatedly solved 
putting the constant vector equal to successive columns 

of the identity matrix, then the solution vectors, so- 
obtained, are the columns of the inverse of the original 
coefficient matrix. The minimum computational labor 

implied by equation (36) is the determination of a 

(symmetric) inverse matrix of dimension (m + n). It thus 
follows that evaluation of the leaving flux densities 

by methods of solution for simultaneous equations, as 
suggested in R.T. would be inappropriate. In the 
following comparisons it will be assumed that the 
inverse implied by equation (36) has been calculated 
as such. 

As written, equation (36) applies only if we # 0 and 
if the enclosure is grey, since the existence of pI-’ is 
assumed. If equation (36) is pre-multiplied by the 

(m + 11)~ block diagonal matrix whose upper and lower 
elements are p1 (m x m) and wOI (n x n), respectively, 
the result is valid for all w,, and si. Performing this 
operation and carrying out the implied partitioning in 

equation (36) yields 

W,o = R“.sAI.EI (m x m) (38a) 

W,o = (1 -w,)pI.R.K.E,I (m x n) (38b) 

plus the interrelationships 

wpp = weP.gs.W~ (n x m) (39a) 

W,Fp = ruOP+W,o +(l -oo)4K,P.VI.E,I 

(n x n) (39b) 

which are valid for all Q,, and Ed. 
Equations (38) and (39) show clearly that neither 

Wp and W,o, are symmetric, nor is Wp the transpose 

of Wpp. This can lead to a valid source of confusion 
regarding the scalar notation in R.T., where the row 
and column indices are reversed. When black surface 

zones are present, equations (38) will be sparse cor- 

responding to the partitioning of R. 

Comparison of equations (38) with equations (13) 

yields 

SS = sI$s+wOL)~W,o~ EI-’ (40a) 

GS = (~-wJK~.W~.EI-~ (40b) 

GG= 

(l-w,)4K,VI.P. [(I-w&$+@.W,O.E,I-‘1 (40~) 

which are universally valid forms involving the leaving 

flux densities. 
That the partitioned-W,, notation is surely a univer- 

sally valid way to approach the problem is evident 

from equations (38)-(40). These equations do make it 
quite clear, however, that the notation is less funda- 

mental and unnecessarily restrictive, mathematically. 
In this regard, note that equations (37b,d) produce 
identical results to equation (40b), when expanded. 
Equation (37a) does, however, suggest the saving of 
one non-sparse matrix multiplication when p1-i exists. 
This results when equation (12a) is substituted into 

equation (13a) for the product R. (SS+ w,,L). A similar 

saving occurs when we # 0 and equation (12b) is sub- 
stituted into equation (13d). The first device has been 
used in Example III and can be employed generally to 

simplify the calculation of S$, In no other instance 
do equations (36) and (37) appear to produce sim- 
plifications of equations (13). 

For a non-scattering medium a major advantage of 

the matrix approach is a significant simplification of 
the notation in R.T. when black surface zones are to 
be allowed for. The latter does, in fact, suggest certain 

column operations on the “transfer matrix” which 
permit calculation of SS in a transparent medium when 
black zones are present. This procedure could be 

generalized to an absorbing-emitting medium where it 
is tantamount to partitioning Wp and Wp (or R). It 
would replaceequations (14) with nine scalar equations. 

Implementation of these suggestions to the case w0 # 0 

with a scalar notation would be virtually impossible. 
For the case of ei # 1 and w. = 0 the present 

method results in identical work to the procedure in 

R.T. The major saving in numerical labor arises in the 
case of w0 # 0 where the calculation of one (n x n) and 
one (m x m) inverse is required as against one (m + n)’ 
inverse. Comparison of computational labor is difficult 
as marked trade-offs exist between storage, execution 
time and coding complexity. Notwithstanding, for 
m = 40, n = 100 and ei # 1, it is estimated that evalu- 
ation of SS for we = 1 by equations (36) and (37a) might 
require 40 per cent more machine time and about 8K 

of additional store as compared with the matrix pro- 
cedure. This assumes labor for matrix inversion to be 
proportional to the cube of the dimension and accounts 
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for the extra matrix multiplications incurred by equa- 
tion (1 la). A direct comparison for some zzi = 1 and 

(10~ # 0 is not possible. 

CONCLUSIONS 

A consistent matrix approach has been presented for 

the explicit calculation of total exchange areas. Re- 
sultant formulae are restricted to diffuse reflection, 

isotropic scatter and spatiaily uniform optical prop- 
erties. The method effects considerable computational 

and notational simplifications over the scalar pro- 
cedure outlined in Radiatice Transfer [4]. These are 

demonstrated with three examples. Because the pro- 
cedure is explicit, formulation of limiting cases, notably 
the optically thin approximation, follow as particularly 
simple consequences of the more general result. 
Formulae are also presented for “finite-infinitesimal 
zone exchange”. 

Results obtained here are particularly suited for the 

development of a highly efficient subroutine for incor- 

poration into a machine code for furnace design 
calculations. The procedure leads to both ready 

estimates of computational labor and efficient storage 
of large arrays. Here internal matrix subroutines may 
be used and symmetry relations provide a basis for 

checks and computational savings. 
It is shown that the major computational advantage 

for this method over that described in Radiutiz;e 
Trart$cr occurs when the medium scatters. The pro- 
cedure then requires calculation of two (symmetric) 
inverse matrices of dimensions (n x w) and (r x r) 

where II and r are the number of volume and non- 
black surface zones respectively. For a non-scattering 
medium, only one (r x r) inverse need be calculated. 

Sufficient conditions are obtained which guarantee 
existence of the inverse matrices for any physically 

meaningful enclosure problem. 
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APPENDIX 
Syficierit Cotlditions,fhr Esistrrm @the Inverse Matrices 

By definition all enclosure problems will satisfy the 
following conditions: 

(Cl) The enclosure is a connected region. 
(C2) Each surface zone will have the direct view pf at least 

one other surface zone. 
(C3) For K, > 0 each surface zone will have the direct view 

of at least one volume zone. 
With these conditions it is now shown that for w,, # 0 and 

K, z 0, matrix P exists and is positive. Further, R exists 
subject to the sufficient conditions: 

(1) K,>O;or 
(2) if K, = 0 the enclosure must contain at least one black 

surface zone; or 
(3) if K, = 0 and no I+ = I, there must be one i such that 

t:, # 0. 
Contradiction of (3) leads to a trivial problem. 

Inverse (particle) stutter matrix P 
The existence of P need be examined only for the case 

(0” # 0 and K, > 0. Under these conditions P-’ is irreducible 
since (Cl) implies ig to be irreducible. The off-diagonal 
elements of P-’ will also be non-positive. Now the n-vector 

of row sums, Z:, of P-’ is defined by 

X = [4K,VI-w,@]*l. (Ala) 

or using equation (8b) to replace the negative member in 
(A I a) there results 

X = (I -too)4~VI*1,+w,@~l,. (Alb) 

Equation (Alb) with the aid of (C3) leads to X > 0 for all 
0 < o0 < I and K, > 0. Thus P-’ is irreducibly diagonally 
dominant and P exists for w0 # 0 and K, > 0 [6]. Moreover, 
since II > 0 guarantees the diagonal elements of P-’ to be 
positive, inverse matrix P is then itself positive for o0 # 0 
and K, > 0 [6]. This fact, with aid of (C3), also leads to 
LrOforK,>OandallO<w,<l. 

Multiple rejection mutrix R 
Here it suffices to examine the existence of T in equation 

(22). Note that L > 0 guarantees the off-diagonal elements 
of T-’ to be non-positive. Now the m-vector of row 
sums, X,, of T-’ is given by 

r = [(A,‘p)lz.z -(ssz.z+t,~,L2.2)l’lm 

and partitioning equations (8) produces 

(A2a) 

AIZ.2. I, =ss*,~‘l~+ss~.~.I,+sp*.I, 

4KVl.I” = gg.l,+gi,. I,+&.1, 

which, when combined with (A2a) yields 

(A3a) 

(A%) 

+(l-~,~~l4K,~g.P.VI.l,. (A2b) 

Consideration of (A2b), with aid of (C3), and L > 0, leads 
to X>O for allO<w,<I and K,>O. For K,>O, T-’ 
is thus strictly diagonally dominant and T exists [6]. 

It remains to demonstrate the existence of T for K, = 0. 
Now if the enclosure contains at least one black zone, 

G,, may be reducible and we must note that the grey zones 
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can be renumbered so as to partition Ss more generally 
into normal form, viz. 

sS= (A4) 

In (A4) each of the .&9 sub-matrices is square and either 
irreducible or the (1 x 1) null matrix. Further, from (Cl) 
each $9 must contain at least one positive entry. Matrix 
T-’ will then be block diagonal where the row sums of each 
of the p blocks are found from (A2b) as 

X@ = (eA/p)lR 9 It, +iiR * 1, k = 1,2,...,p (A5) 

where kr is the dimension of &Fz and x @ is a kr-vector. 
Consideration of (A5) with aid of (C2) yields the conclusions 
that when K, = 0 and the enclosure contains at least one 
black surface zone, T will exist and be block diagonal. 
Moreover. each of the blocks will be positive. If there are 
no black zones .&@ will not be defined but Ss,,, = Ss will 
be irreducible [after (Cl)]. In this instance equation (A5) 
leads to the requirement that there be at least one ci # 0 
for T-’ to be irreducibly diagonally dominant. 

The renumbering of grey zones leading to the partitioning 
in (A4) can be accomplished with the aid of the directed 

-0 graph for Ss [6]. Here each SS~,,~ represents an “isolated 
pocket” of grey surface zones wluch have no direct view of 
any other grey zones. This device may be used to practical 

advantage. 

LA METHODE DE ZONAGE: RELATIONS MATRICIELLES EXPLICITES 
POUR DES SURFACES EN ECHANGE TOTAL 

R&urn&On dtveloppe des formules matricielles explicites pour le calcul des surfaces en ichange total 
dans le cadre de la mtthode de zonage de Hottel. Des relations pratiques sont obtenues pour le cas 
g&n&al d’un milieu gris absorbant et tmetteur, isotropiquement dispersif, confink dans une enceinte 
grise. L’approche conduit simplement a des cas limites et rtduit sensiblement la procedure de calcul. 
Pour une enceinte dtcoupke en n volumes et r surfaces non noires, la procedure g&n&ale requiert 

I’&valuation d’une matrice (n x n) et d’une matrice inverse (r x r). Des conditions suffisantes pour 
I’existence de la dernitre sont montrCes absolument non restrictives. 

DIE ZONENMETHODE: EXPLIZITE MATRIZENBEZIEHUNGEN 
FijR DIE GESAMTALJSTAUSCHFLACHEN 

Zlsammenfassung-Explizite Matrizenbeziehungen werden fiir die Berechnung der Gesamtaustausch- 
When mit der Zonenmethode von Hottel abgeleitet. Es werden fir den allgemeinen Fall eines grauen, 
absorbierend-ausstrahlenden/isotropstreuenden Mediums, das sich in einem Lambert-Hohlraum 
befindet, Berechnungsgleichungen gewonnen. Die LGsung fiihrt leicht auf Grenzfille und reduziert 
bedeutend die rechnerische Auswertung. Fiir einen Hohlraum, eingeteilt in n Volumen- und r nicht- 
schwarze Oberfllchenzonen erfordert das allgemeine Verfahren die Auswertung einer (n x n) und (r x r) 
inversen Matrix. Es werden fiir das Bestehen der letzteren ausreichende Bedingungen gezeigt. die mit 

keiner Einschrinkung verbunden sind. 

30HAJlhHblii METOLL IlBHblE MATPMYHblE COOTHOUlEHl45l AJISl 06UEti 
flJlOL4AAM 06MEHA 

AuHoTauHa - B npWIO~eHI4&i K- 30HaJlbHOMy MeTOny XOrTeJIfl BblEleDeHbl IIBHble MaTpMWble r/lop- 

MyAbl n.1~ pacqeTa o6lueR rrnOuLanM 06MeHa. nOJryYeHbl pa6ouwe COOTHOWeHMx nnn o6qero CnyYaa 
CepOti nOrflO~aloLue-M3n~a~~efi M30TpOnHO PaCCertBaWtUeti cpenbl B ~IOJIOCTM naM6epTa. ~TOT 

MeTOR JterKO QNiBOnMr K IlpefleJlbHblM CJly’iaHM H 3HaYMTeJibHO o6nerYaer PaC’ierbl. Ann ITOJIOCTCI, 

pa3nefleHHOfi Ha /?-06b.5MHblX 30H M r-HeYepHblX rlOBepXHOCTHblX POH, o6uan MeTOnMKa Tpe6yeT 

OnpeneJIeHMR OnHOA (II Y II) H OnHOi? (Y X r) 06paTHblX MarpclU. nOKa3aH0, ‘IT0 flOCTaTOYHble 

yCJ,OBMa L,,lR CyU,eCTBOBaHRfl 3TMX MarpMU IIBJWOTCR COBCeM He OrpaHMWTeJ,bHblMM. 


